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Abstract: Aloe vera is a medicinal plant species of the genus Aloe with a long history of usage
around the world. Acemannan, considered one of the main bioactive polysaccharides of Aloe vera,
possesses immunoregulation, anti-cancer, anti-oxidation, wound healing and bone proliferation
promotion, neuroprotection, and intestinal health promotion activities, among others. In this
review, recent advancements in the extraction, purification, structural characteristics and biological
activities of acemannan from Aloe vera were summarized. Among these advancements, the structural
characteristics of purified polysaccharides were reviewed in detail. Meanwhile, the biological
activities of acemannan from Aloe vera determined by in vivo, in vitro and clinical experiments are
summarized, and possible mechanisms of these bioactivities were discussed. Moreover, the latest
research progress on the use of acemannan in dentistry and wound healing was also summarized in
details. The structure-activity relationships of acemannan and its medical applications were discussed.
Finally, new perspectives for future research work on acemannan were proposed. In conclusion, this
review summarizes the extraction, purification, structural characteristics, biological activities and
pharmacological applications of acemannan, and provides information for the industrial production
and possible applications in dentistry and wound healing in the future.
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1. Introduction

Polysaccharides are a kind of carbohydrate with high molecular weight, which represent a major
class of bioactive molecules derived from microorganisms, animals, or plants [1]. Polysaccharides are
extensively used in various healthcare products and medicines because of their notable and excellent
bioactivities, such as antimicrobial [2], antitumor [3], antiviral [4], and antioxidant activities [5].
In addition, polysaccharides are among the natural biopolymers found on Earth [6], which are widely
used as biomaterials for wound healing [7], drug delivery [8] and tissue engineering [9]. Aloe vera is
one of the few natural plants that are very abundant in polysaccharides [10].

Aloe vera is one of the most popular medicinal plants, widely used for the prevention or treatment
of skin diseases, metabolic diseases, cardiovascular diseases and cancers throughout the world.
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Numerous studies have reported that aloe leaf possesses numerous functions, which are attributed
to the presence of polysaccharides, such as immunomodulation, antimicrobial, antiviral, anti-cancer,
anti-inflammatory properties [11–13]. Polysaccharide acetylation can lead to many changes in the
function of polysaccharides [14]. Acemannan, a β-(1,4)-acetylated soluble polymannose, is the major
bioactive polysaccharide of Aloe vera, from which gel and skin it is extracted [15]. In the past few
decades, acemannan has been reported to have many pharmacological and biological applications in
medical and industrial fields, such as oral diseases [16], metabolic diseases, cardiovascular diseases,
tumor diseases [17]. Recently, research on acemannan has focused on dentistry and wound healing.
Acemannan has been used for the treatment of wounds and alveolar osteitis using protocols approved
by the US Food and Drug Administration (FDA) [7,18]. More importantly, more and more studies are
paying attention to the applications of acemannan in new materials and drug delivery [19].

On the one hand, although acemannan has been extensively investigated, there is the only one mini
review mainly concentrated on the pharmacological advancement of acemannan from Aloe vera [15]
and no comprehensive review of the extraction, purification, biological activities of acemannan. Thus,
summarizing the information on acemannan in the extraction, purification, biological activities is of
great value.

On the other hand, while the latest research on acemannan was focused on dentistry and wound
healing, the data concerning dentistry and orthopedics is scattered. In view of this, summary of the role
and mechanism of acemannan in the latest medical research is necessary. Meanwhile, the relationships
between the activities of acemannan and its structure have not been completely elucidated, which
limits its application. Thus, summarizing the different functions and mechanisms of acemannan in
medical research is of great value.

Hence, the aim of the present review is to summarize the recent advances in extraction, purification,
structural characteristics and pharmacological activities of acemannan, respectively, discuss the
relationship between the activity and structure, and summarize the applications in terms of materials
and medicines.

2. Extraction, Separation and Purification of Acemannan

2.1. Factors Affecting Acemannan Production and Structure

Gel and skin of aloe are the main sources of acemannan, which has β-1,4 linkages and a variable
degree of acylation [20,21]. Polysaccharides constitute most of the dry matter of aloe. Acemannan is
a kind of storage polysaccharide, an acetylated glucomannan, which is located in the protoplasts of
parenchyma cells that contain many polysaccharides in the cell wall matrix. Carbohydrate analysis of
water soluble residues in aloe leaves showed that glucomannan was mainly located in the cell walls of
aloe leaves [22,23].

Aloe acemannan variability depends greatly on the species and cultivation conditions. The content
of the β-polysaccharide fraction, however, was significantly higher in A. vera than A. arborescens [24].
Meanwhile, the content of acemannan and the degree of acetylation also depend on different planting
conditions. The irrigation of the plant affects the amount of polysaccharides. The mannose decreases
by 41% and acemannan does not undergo deacetylation due to a water deficit of up to 60% [25]. When
the aloe is irrigated with seawater, 42% seawater stress treatment only reduces the polysaccharide
concentration in the base leaves, without lowering the polysaccharide concentration in the upper and
middle parts [26]. Moreover, the growth age and harvest season of aloe also affect the content of
polysaccharide. Acemannan is more abundant in three years old Aloe vera plants than in four years old
and two years old ones, and growing under increasing light intensities results in higher acemannan
concentrations in A. vera and A. arborescens according to semi-quantitative estimation and 1H-NMR
spectroscopy analysis [24,27].

The potential use of acemannan often involves some type of processing, which can include heating,
drying, pasteurization and dehydration [10]. The main effects of spray drying, industrial freeze-drying,
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refractive window drying and radiation zone drying on the main bioactive polysaccharide acemannan
in aloe gel were studied. All the drying processes significantly reduced the yield of acemannan
(∼40%). Methylation analysis showed that mannose deacetylation (>60%) was confirmed by 1H-NMR
analysis [28]. The effects of heat treatment and dehydration on the physicochemical properties of
bioactive acemannan polysaccharide in Aloe barbadensis Miller parenchyma at different temperatures
(30–80 ◦C) were studied and indicated that the modification of acemannan is especially significant at
60 ◦C. A new food drying method, far infrared radiation (FIR) and high-voltage electric field (HVEF),
was developed to dry aloe in hot air. The study found that the polysaccharide remained fairly stable
up to around 70 ◦C. At a certain temperature, the higher the electric field intensity, the higher the
content of acemannan in the sample, which may be related to the shorter drying time. The content of
mannose increased with the increase of electric field intensity and temperature [29]. Heating mainly
increased the average molecular weight of polysaccharides from 45 kDa to 81 kDa, which may be
mainly due to structural modifications, such as deacetylation and losses of galactose-rich side-chains
from the mannose backbones detected through methylation analysis [23]. There are also related
studies that show that the losses of galactosyl residues and deacetylation process, would result in
mannose-rich chains of higher molecular weight (MW). Distribution of the acetyl groups and galactosyl
units in the main chain can have a significant effect on the physical and biological characteristics
of the acemannan [30]. In conditions of 65, 75 and 85 ◦C, a pasteurisation process of 15 min and
25 min was carried out on acemannan, to promote its physical and chemical modification, respectively.
The pasteurization method can improve the yield of acemannan [30].

2.2. Exaction of Acemannan

Acemannan, found in internal leaf aloe gel, is a polysaccharide composed of β-(1,4)-linked highly
acetylated mannoses, β-(1,4)-linked glucose and α-(1,6)-linked galactose [21,31]. Since the bioactive
components of aloe including acemannan always have considerably different exaction methods
(Table 1). The separation process is shown in Figure 1, where the molecular structure is taken from [32].
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Figure 1. Schematic representation of extraction, separation purification and structure characterization
of acemannan from Aloe vera.

Generally, extraction in hot water and ethanol is the classic, most convenient method of laboratory
extraction, and has been widely used in industry [29,33]. Briefly, the water exaction method includes
cleaning, homogenization, separation, and centrifugation of Aloe vera. The supernatant was collected
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and mixed with absolute ethanol at a ratio of 1:3 for 12 h. The white precipitate was collected and
centrifuged. Acemannan was collected by dialysis and freeze-drying as white opaque particles [34].
The ratio of liquid to solid has an important effect on the yield of conventional water extraction.
The range of extraction temperature with time is usually in the range of 80–100 ◦C, 0.5–6 h [35,36].
However, water extraction, the most popular approach, always has disadvantages of long times
and high temperatures, low efficiency, and possible polysaccharides degradation, resulting in large
consumptions of energy and time. Therefore, it is necessary to improve the extraction conditions.
Numerous studies have proved aloe polysaccharide was partially digested with cellulose [37].

2.3. Separation and Purification of Acemannan

After extraction, the crude extracts are mainly obtained by ethanol precipitation (Table 1).
As such polysaccharides usually contain proteins, pigments and small molecular substances, further
separation and purify is necessary to get acemannan. Separation and purification of crude extracts
by anion exchange chromatography coupled with gel permeation chromatography (DEAE-Sephadex
A-25 column) [38–40] and normal membrane separation were done [41]. However, considering the
long fractionation time, low cost, membrane vulnerability, gradient ethanol precipitation method
and gradient ammonium sulfate precipitation method were adopted in recent years. Besides, the
membranes with special structure and function are also used in the separation and purification
of acemannan. Acemannan was fractionated with ultrafiltration cells from an Amicon with the
corresponding molecular weight cut-off membrane according to the molecular size [14,42]. Moreover,
electrospun cellulose acetate membrane was used as an alternative carrier for separation of crude
extracts by electrophoresis. By controlling the porosity and pore size of membrane, it was used as
a simple technical advantage for separation of high molecular weight and near molecular weight
polysaccharides [43].

2.4. Structural Characterization Method and Characteristics of Acemannan

Acemannan was determined by high performance liquid chromatography (HPLC, BIOSEP
SECH400 column, Table 1). Then the structure of acemannan was analyzed by ultraviolet (UV)
spectroscopy, infrared (IR) spectroscopy, gas chromatography (GC), mass spectrometry (MS), high
performance gel permeation chromatography (HPGPC), UV spectrum scanning and nuclear magnetic
resonance (NMR). Homogeneity and MW are mostly measured by HPLC [44,45], HPGPC [45] and
SEC [46,47] technologies. After being completely hydrolyzed by trifluoroacetic acid, the hydrolysate is
separated and analyzed by HPLC, GC [48], or GC-MS [48]. Detection of functional groups is commonly
carried out by IR or FT-IR. In order to determine the composition of the main chain and branched
chain, methylation analysis combined with GC-MS is an effective method to determine the linkage
types of glycosyl residues [22,49].

Nuclear magnetic resonance (NMR) spectra, including 1H, 13C were widely used to determine the
abnormal structure, position and linkage sequence of glycosyl residues [27,50]. Circular dichroism
(CD) spectra can directly analyze the conformational structure, usually by characterizing the Congo
red polysaccharide complexes to determine the conformational characteristics of the solution at
540 nm by semi-quantitative estimation by UV [27,51]. Moreover, recent research shows that Aloe vera
polysaccharide can be determined by the use of size exclusion chromatography (SEC)–multi-angle
laser light scattering (MALS)–differential refractive index (DRI) [52].

In general, acemannan has molecular weights in the range of about 1000–1600 kDa [53,54]. Most
plant polysaccharides consist of two or more kinds of monosaccharides, such as rhamnose (Rha),
mannose (Man), fucose (Fuc), glucose (Glc), xylose (Xyl), arabinose (Ara) and galactose (Gal), while
acemannan is mainly composed of mannose (84.9%), glucose (7.2%), and galactose (3.9%) [53]. Various
polysaccharides, including acemannan, have been isolated from aloe [55,56]. Acemannan, which
consists of β-(1,4)-linked mannose residues, is the most widely studied aloe polysaccharide, [57].
Acemannan is partially acetylated at the C-2 and C-3 positions that exhibit an acetyl:mannose monomer
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ratio of approximately 1:1, and also contains some side chains attached to C-6 like galactose [22,31,58].
Ulteriorly, linkages between monomers in acemannan were analysed by 13C-NMR, and the results
indicated acemannan contains a single-chain backbone of β-(1,4) mannose with β-(1,4) glucose inserted
into the backbone and α-(1,6) galactose branching from the backbone [54]. By using methylation,
high performance size-exclusion chromatography coupled with multiangle laser light scattering
(HPSEC-MALLS), NMR, GC-MS and scanning electron microscopy (SEM) techniques were used to
analyse ASP. The research showed that ASP consists of β-(1,4)-glucomannans with acetyl groups, which
may attach to the O-2, O-3 or O-6 positions of mannopyranosyl residues in the backbone as mono-, di-,
or tri-acetylated forms [59] This suggests that ASP is probably acemannan. Acemannan was found to
have a Man: Glc:Gal:GalA:Fuc:Ara:Xyl ratio of 120:9:6:3:2:2:1 with traces of Rha and GlcA. Relevant
studies have provided direct evidence for the backbone of dextran, but also questioned the structure
of the side chain. Further linkage analysis in acemannan treated with endo-(1→4)-β-D-mannanase
yielded 4-Manp (53%), Manp-(1→ residues (26%), 2,4-Manp (3%), 3,4-Manp (1%), 4,6-Manp (1%),
4-Glcp (5%), 4-Xylp (1%), Xylp-(1→ residues (2%), Galp-(1→ residues (5%). The structure is further
characterized by the method of NMR analysis, and the acemannan has a majority of a-Galp-(1→residues
linked to O-2, O-3, or O-6 of→4)-β-Manp-(1→ residues, with ∼16→4)- β-Manp-(1→ residues between
the side chains [60].
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Table 1. Summary of the extraction, purification, characterization methods and structural studies of acemannan.

Source Extraction, Fractionation,
Purification

Structural
Characterization

Method
MW (kDa) Monosaccharide

Composition Structural Feature Yield Reference

Fresh gel
Water extraction (Homogenization,

centrifugation mixed with 3 volumes
of ethanol, lyophilization)

LC; FT-IR; SEC;
1H-NMR 190–220 Man: Glc: Gal = 57:22:17 O-(Acetyl-d-Manp)-O-(acetyl-d-Manp)-

O-(d-Glap)-O-(acetyl-d-Man) — [14]

Fresh gel Water extraction; separation (Shodex
Sugar KS-804 column)

13C-NMR; SEM
1H-NMR; FT-IR

150-190 Man: Glc: Gal = 65:17:17
Single-branched galactose at C6 of

the second acetylated mannose
residue

0.04% [33]

Frozen gel
Ultrafiltration cell membrane

(Fractionated by ultrafiltration cell
with MW cut-off membrane)

HPLC (BIOSEP
SECH400 column); GC
(SP2330 glass-capillary
column); 1H-NMR; IR

>500 Man: Glc = 97:3

Galp-(1→residues link to O-2, O-3, or
O-6 of→4)-β-Manp-(1→ residues,

with ∼16→4)-β-Manp-(1→ residues
between the side chains

2% [42]

Fresh gel

Water extraction; separation
(homogenization, centrifugation,

alcohol precipitation, dialysis,
lyophilization)

HPLC (Shodex Sugar
KS-804 column);

GC–MS; 13C-NMR
≥800

Man (77.18%); Glc (15.3%);
Gal (4.9%); Ara (0.7%);

Rha (0.2%); Fuc (0.34%);
Xyl (0.7%)

β-(1→4) 0.2% [46]

Fresh gel
(1 year old)

Water extraction (Homogenization,
centrifugation with 80% v/v alcohol,

ammonium sulfate precipitation,
lyophilization)

GC-MS; SEC; 13C-NMR 1100 Man: Glc = 15:1
O-2, O-3, and O-6 of→4)-

β-Manp-(1→residues to single
α-Galp-(1→side chains

— [47]

Fresh gel

Water extraction; (Homogenization,
centrifugation mixed with 3 volumes

of ethanol, wash with ethanol,
lyophilization)

HPGPC; FTIR; GLC-MS;
TGA 1020 Mannose (84.9%): glucose

(7.2%); galactose (3.9%)

(1→4)-Linked mannose/glucose
2,3,6-tri-O-acetyl-mannose,2,6-di-O-

acetylglucose,6-acetyl-O-glucose,
3,6-di-O-acetyl-glucose

— [53]

Frozen gel
Water extraction (Homogenization,

centrifugation, alcohol precipitation,
lyophilization)

GC–MS;
Ion-chromatograph;

13C-NMR
1100 Man: Glc: Gal: GalA: Fuc:

Ara: Xyl = 120:9:6:3:2:2:1

→4)-β-Manp-(1→ and
→4)-β-Glcp-(1→ residues in 15:1

ratio
— [60]

Fresh gel
(3 years old))

Water extraction (Homogenization,
centrifugation, supernatant mixed
with 3 volumes of ethanol, pellet)

FACE; FT-IR; SEC 281 Man (62.9%); Glc (13.1%);
Gal (0.6%) — 1.7% [61]

Frozen gel Water extraction; (depigmentation,
deproteinization) CR; GC-MS; PACE — Man (86.87%); Glc (0.05%);

Gal (12.68%); Ara (0.38%) β-(1→4) 0.32% [62]

Fluorophore-assisted carbohydrate electrophoresis (FACE); Congo red (CR); Liquid chromatography (LC); Size exclusion chromatography(SEC); Polysaccharide analysis by carbohydrate
gel electrophoresis (PACE); Thermogravimetric analysis (TGA).
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3. Biological Activities of Acemannan

3.1. Immunomodulation Activity

A large number of in vitro and in vivo studies have confirmed the immunomodulatory activity
of acemannan on splenic lymphocyte, macrophage and dendritic cells. Acemannan, an important
immunoenhancer, can enhance the lymphocyte response to alloantigen (Table 2, Table 3 and Figure 2).
And the mechanism may be related to the release of IL-1 from the ordered nuclear cells under the
protection of alloantigen [63,64]. The spleen, which combines the adaptive immune system and the
innate immune system, is the largest secondary immune organ of the body [65,66]. Acemannan from
Aloe vera can activate effectively regulate immunity. In [61], radiation-induced mortality of mice was
significantly decreased when the mice were administered with acemannan at a dose of 150 mg/kg
body weight by oral gavage for 7 days. The findings showed that the survival of mice treated with
acemannan for 7-day pretreatment or post-treatment increased by 60 and 20%. Acemannan could
the upregulate the cytokines like TNF-α and IL-1 and improve hematopoiesis, such as peripheral
lymphocytes counts, spleen cellularity and spleen index. Similarly, hematopoiesis of C57 mice injected
with 1 mg/mouse were obviously stimulated. What’s more, acemannan has a greater stimulatory
activity for white blood cell (WBC) counts and spleen cellularity as well as on the absolute numbers of
lymphocytes, neutrophils, monocytes in irradiation-induced myelosuppression mice [67]. Similarly,
the mitogenic activities of splenocytes were obviously increased as splenic lymphocytes from spleen of
Swiss albino mice were cultivated with the acemannan [53]. Consistent with previous studies, actanin
can stimulate the antigenic and mitotic responses of human lymphocytes, but not mitosis itself [64].
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Macrophages are an important part of the monocyte macrophage system and have a variety of
functions in the immune response [68]. Highest enhancement in NO production or IL-1/IL-6 with
acemannan through MAPK via binding with toll-like receptors, indicates the importance of the acetyl
groups in macrophages from TBI mice [53]. Acemannan has a stimulating effect by enhancing the
respiratory burst, phagocytosis, and killing of Candida albicans by murine peritoneal macrophages.
38% of Candida albicans died after 10 min of exposure to acemannan, compared with 0.5% in the control
group. When mice peritoneal macrophages were incubated with acemannan for 60 min, 98% of the
yeast was killed, compared with 0% in the control group [69]. Moreover, a mechanism of action
for acemannan in activating RAW 264.7 cells has been proposed. In RAW 264.7 cells from a mouse
macrophage cell line, acemannan stimulates the production of macrophage cytokines, nitric oxide
release, surface molecule expression and cell morphology. Interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) were produced in a dose-dependent manner, and morphological changes of the cells
were observed. The increasing of surface antigen expression is stimulated by an increase in the mixture
of interferon-γ (IFN-γ)-acemannan [70].

Dendritic cells (DCs) initiate and regulate highly pathogenic and specific adaptive immune
responses, which are the core of the development of immune memory and tolerance [71]. Studies
found that acemannan promoted nonspecific immunity, cellular immunity and humoral immunity.
The immunomodulatory activities of acemannan were previously investigated in dendritic cells by
culturing in a medium supplemented with GM-CSF, IL-4 and acemannan. Phenotypic analysis for the
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expression of class II MHC molecules and major co-stimulatory molecules such as CD40, CD54 B7-1
and B7-2 indicated that acemannan could significantly induce maturation of immature DCs though
increasing allogeneic mixed lymphocyte reaction (MLR) and IL-12 production [42].

3.2. Anti-Cancer Activity

Colon cancer is one of the major causes of morbidity and mortality around the world. Inflammatory
bowel disease is a chronic inflammatory disease, which can increase the risk of colorectal cancer
(Table 2, Table 3 and Figure 2) [72,73]. Acemannan-induced macrophages increase cytotoxicity by
increasing the production of nitric oxide in chicken bone marrow cell culture [74]. An experiment
found that administration of PAG, rich in acemannan, significantly reduced the multiplicity of colonic
adenomas and adenocarcinomas in colon cancer mice treated with an azoxymethane and dextran
sodium sulfate. The study confirmed that PAG reduced the activation of nuclear factor kappa B (NF-κB)
through the activation of peroxisome proliferator-activated receptor gamma, leading to the inhibition
of inducible nitric oxidesynthase and cyclooxygenase-2 expression. What’ more, the expression and
phosphorylation of signal transducer, activator of transcription 3 and cell cycle progression-inducing
cellular factors including cyclin-dependent kinase 4, cyclin D1 and extracellular signal-regulated
kinases 1/2 were decreased by PAG, resulting in inhibition of colorectal cancer [75]. Acemannan
exhibited macrophage-activating activity in ICR mice implanted with sarcoma 180 cells compared with
an untreated group. Results confirm that the macrophage-activating activity of acemannan shown
in vitro is correlated with the antitumor activity in vivo [37].

Acemannan exhibited antiproliferative effect on murine (SpMC) and human cells (PBMC) and
several tumoral cell lines of T lymphocytic origin though inhibiting the expression of activation markers
(CD3–CD25 (+) cells). This also showed that acemannan has a dual effect on normal cells and tumor
cells, inhibiting the activation of tumor cells and increasing the activity of normal cells [76]. Antigen
expression and tumor killing ability of macrophage dysfunction. Therefore, macrophages are an
excellent target for immunotherapy of tumors. Acemannan, as a biological response modifier and a
potent murine B- and T-cell stimulator, could enhance the antigen recognition by inducing tumor cell
cytotoxicity in murine peritoneal macrophage cells [77].

3.3. Antioxidant Activity

Lots of in vitro and in vivo experiments (Tables 2 and 3) have indicated that acemannan has
scavenging effects on free radicals [78,79] and ABTS [53]. The chelating activity and reduction ability
of iron ion were verified. The cellular studies have showed that the polysaccharides could inhibit
the production of reactive oxygen (ROS), thus reducing the damage caused by oxidative stress [80].
Numerous evidences insinuated that acemannan was capable of mitigating radiation-induced oxidative
damages in vivo. It is well known that radiation can destroy the biological macromolecules by free
radicals [61]. Study has proved that the multiple acetylated polysaccharides have antioxidation effect
and can reduce the damage of DNA [81]. Study has proved acemannan reduces the radiation-induced
oxidative by activating microphage via TLR-4 receptors [53]. Antioxidants protect biological systems
from free radical-induced oxidative damage by scavenging or inhibiting free radical production [82].
The acetyl and hydroxyl groups of acemannan are respectively involved in free radical scavenging and
formation [53].
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Table 2. Biological activity of acemannan in vitro.

Source Target Dose Biological Activities Action or Mechanism Reference

Fresh gel Human gingival fibroblasts 16 mg/mL Oral wound healing Proliferation (+); keratinocyte growth factor-1 (KGF-1) (+);
VEGF (+); type I collagen production (+) [7]

Fresh gel Human gingival fibroblasts 10 mg/mL Oral wound healing IL-6 (+); IL−8 (+); p50/DNA (+); TLR5/NF-κB (+); Binds with
TLR5 ectodomain flagellin recognition sites [33]

Freeze-dried gel Immature dendritic cells (mice) 100 µg/mL Immunomodulatory Induce maturation of immature DCs; mixed lymphocyte
reaction; IL-12 (+) [42]

Fresh gel Bone marrow stromal cell (BMSC)
(rat) 8 mg/mL Periodontal tissue

regeneration

BMSC proliferation (+); vascular endothelial growth factors
(VEGF) (+); ALPase activity (+); bone morphogenic protein-2

(BMP-2) (+); bone sialoprotein (BSP) (+); osteopontin(OPN) (+);
mineralization (+)

[46]

Fresh gel RAW 264.7 cells (mouse) 100 µg/mL Immunomodulatory IL-6 (+); TNF-α (+); surface antigen expression (+); IFN-γ (+) [70]
Fresh gel Tumoral cells (murine, human) 0.6 mg/mL Antitumor Spontaneous proliferation (−); CD25 (+) [76]

Fresh gel Peritoneal macrophages (mice) 500 µg/mL Induced tumor cell
cytotoxicity Endocytosis (+); murine macrophage stimulation [77]

Fresh gel Lactobacillus, Bifidobacterium,
human fecal bacteria 3 g/L Prebiotics Growth (+); butyrate (+); propionate (+); SCFA (+) [62]

Fresh gel Hepatocytes (rat) 0.4–250 µg/mL Antigenotoxic 3H]B[a]P-DNA adduct formation (−) [83]

Fresh gel Human periodontal ligament cells 4 mg/mL Periodontal tissue
regeneration

Cell proliferation (+); RUNX2 (+); GDF5(+); VEGF (+);
BMP2 (+); COL1 (+); ALP (+); mineral deposition (+) [84]

Fresh gel Human periodontal ligament cells,
pulpal cells 1 mg/mL Periodontal regeneration BMP2 mRNA (+) and protein (+) [85]

Fresh gel Human primary dental pulpal cells — Periodontal regeneration
Proliferation (+); alkaline phosphatase (+), type I collagen (+);
BMP-2 (+); BMP-4 (+); vascular endothelial growth factor (+);

dentin sialo protein expression (+); mineralization (+)
[86]

LGM Pharma Skin primary fibroblasts (mice) 150 µg/mL Cell proliferation Cyclin D1 (+); eukaryotic translation initiation factor-4F (eIF4F)
(+); activation of AKT/mTOR [87]
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Table 3. Biological activity of acemannan in vivo.

Source Model Target Dose Administraction Biological Activities Action or Mechanism Reference

Fresh gel — Sprague Dawley
rats (male) 2% External

application Wound healing Reduced oral wound areas [7]

Dring gel (200:1) Implanted with
sarcoma 180 cell ICR mice 1 mg/mouse Injection Antitumor Exhibited macrophage-activating activity [37]

Fresh gel Tooth extraction
model

Sprague–Dawley
rats (male) 32 mg/kg External

application
Accelerating bone

formation
Bone mineral density (+); tooth socket

healing (+) [46]

Fresh gel Irradiation at
2.14 Gy/min

Swiss albino mice
(male) 50 mg/kg Oral gavage

Immunomodulation/
radioprotection;

antioxidation

Scavenge free radicals; survival (+);
mitogenic activity (+); hematopoiesis (+);

activation of MAPK
[53]

Fresh gel Radiation-induced
mortality

Swiss albino mice
(male) 150 mg/kg Oral gavage Immunomodulatory Survival (+); peripheral lymphocytes

(+);TNF-α (+); IL-1 (+) [61]

Fresh gel Radiation-induced
myelosuppression

C57BL/6 mice
(female) 1 mg/mouse Injection Hematopoiesis

White blood cell (+); spleen cellularity
(+); lymphocytes (+); neutrophils (+);

monocytes
[67]

Fresh gel [3H]B[a]P ICR mice (male) 50 mg/mouse Oral gavage Antigenotoxic Glutathione-s-transferase
(+);[3H]B[a]P-DNA adduct formation (-) [83]

Fresh gel — Mongrel Dogs — Oral gavage Accelerating bone
formation

Induced bone, cementum, and
periodontal ligament formation [84]

Fresh gel Full-thickness skin
excisional wound

BALB/c mice
(male) 2 mg/kg Injection Wound healing Accelerated skin wound closure [87]

Fresh gel — SpragueeDawley
rats (female) 8 mg/sponge External

application Bone regeneration Integrate new bone with the old bone [88]
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3.4. Gastric and Intestinal Activity

Probiotics can promote the growth of Lactobacillus and Bifidobacterium species in the colon,
resulting in the production of short chain fatty acids (SCFAs) by fermentation. Beneficial fermentation
products can reduce the risk of non-communicable chronic diseases, including some types of cancer,
such as colorectal cancer [89,90]. A recent study has confirmed that acemannan has advantages in
inducing growth in bacteria such as Bifidobacterium and Lactobacillus. By co-culturing acemannan with
Bifidobacterium and Lactobacillus, it was found that the number of beneficial colon bacteria increased
significantly, followed by an increase in the synthesis of SCFAs, like acetate, propionate, and butyrate,
found during fermentation of human feces with acemannan using qPCR [62]

3.5. Neuroprotective Activities

The neuroprotective effect of acemannan on humans has recently attracted considerable attention.
Some non-starch polysaccharides, such as galactomannan and glucomannan extracted from bacteria
and plants, have been shown to induce biological effects through direct or indirect mechanisms,
including immune regulation of antioxidant and antidiabetic activities, as well as gastrointestinal
and probiotics activities. Placebo-controlled experimental studies show that the consumption of
glucomannans and galactomannans, acemannan improved cognitive performance in the middle age of
mental fatigue [91]. The results provided that the improvement in memory performance following a
mixture including acemannan was not related to changes in blood glucose.

3.6. Hepatoprotective Effect

The antigenotoxic and chemopreventive effect of acemannan on (B[a]P)-DNA adducts was
investigated in vitro and in vivo. Acemmannan could decrease [H-3]B[a]P-DNA adduct formation in
primary rat hepatocytes and rat by increasing glutathione S-transferase activity [83].

4. Acemannan in Dentistry

Periodontal ligament cells are treated with plants to induce mineral deposition. Although there are
few studies in this area, current evidence suggests that plants have a potential role in the treatment of
periodontal disease [92]. Many research groups have demonstrated the role of acemannan in dentistry
(Table 2, Table 3, Figure 3).

Numerous evidences insinuat that acemannan is capable of enhancing bone formation by
stimulating primary rat bone marrow stromal cell (BMSC) proliferation, differentiation into osteoblasts,
and extracellular matrix synthesis in vivo. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase
activity, bone sialoprotein, osteopontin expression, and mineralization was significantly improved in
BMSCs treated with acemannan at a dose of 8 mg/mL. Moreover, acemannan-treated Sprague–Dawley
rats in a tooth extraction model had higher bone mineral density and faster bone healing in vivo.
The results proved acemannan could function as a bioactive molecule inducing bone formation [46].

Acemannan, as an active substance, increased mRNA expression and mineral deposition of BMP2.
Results showed acemannan significantly increased periodontal ligament cell proliferation, type I
collagen and alkaline phosphatase activity, upregulation of growth/differentiation factor 5, runt-related
transcription factor 2, VEGF, BMP2 and mineral deposition in vitro. In addition, acemannan significantly
accelerated cementum, new alveolar bone and periodontal ligament formation [84]. Another study
has found acemanan also promoted mineralization of human dental pulp cells [85]. Those studies
suggest acemannan may be a natural biomolecules that promotes the regeneration of periodontal
tissues. Treatment of human papillary cells by acemannan can lead to proliferation of dental pulp cells,
activation of alkaline phosphatase, type I collagen, BMP-2, BMP-4, vascular endothelial growth factor,
dentin saliva protein expression and mineralization. It showed acemannan are biocompatible with the
pulp [86].
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Computer simulation of the mechanism between polysaccharides and bacteria has been proved
(Figure 4). The results indicated that acemannan stimulates IL-6/-8 expression at mRNA and
protein levels and significantly increases p50/DNA binding. Computer simulations showed that
the monomer/dimer single-chain acemannan molecule interacts with the TLR5 flagellin recognition site
and has a high binding affinity. The first demonstration of acemannan induction of IL-6/-8 expression
and p50/DNA binding in gingival fibroblasts via TLR5/ / NF-κB-dependent signaling pathway [33].

Further clinical random controlled trial has also shown that polysaccharides can promote the
increase of dental bone density. After surgical removal of alveolar bone, 99 volunteers (18–24 years
old) were randomly divided into an acemannan sponge group and control group for alveolar bone
healing. Three months later, the mandibular partial bone impacted third molar was removed. Results
showed the percentage and change rate of alveolar bone X-ray density in the acemannan treatment
group were significantly higher than those in the control group at 3 months after operation, which
proved that acemannan has the effect on increasing bone density and tooth socket healing in the third
molar of the mandibular part [93]. Another clinical trial investigated 37 children aged 7–11 years with a
diagnosis of reversible pulpitis. After the infected dentin was completely removed by surgery, the teeth
exposed to the pulp tip were randomly divided into two treatment groups: acemannan or calcium
hydroxide. Histopathological observation of the teeth showed that the histopathological response of
the acemannan treatment group was significantly better than that of the calcium hydroxide treatment
group, and the overall success rate of acemannan was 72.73% [19]. The results showed that the natural
polysaccharide material is biocompatible and can promote the formation of dentin. In the future, it can
be used as a direct pulping material for human deep deciduous teeth.
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5. Acemannan in Wound Healing

Ulcers are one of the most common lesions in the mouth and can cause discomfort and pain,
especially in patients with systemic diseases. Wound healing of oral ulcers is a complex process
involving a large number of different cell types in migration, proliferation, differentiation, clearance
of damaged tissue, and formation of extracellular matrices to protect the oral cavity [94,95]. Clinical
wound healing tests conducted with acemannan showed that polysaccharides can accelerate healing
time, reduce pain, and have no side effects (Table 2, Table 3, Figure 3) [96].

Acemannan was found to possess oral wound healing functions in human gingival fibroblasts and
rats, including stimulating the expression of keratinocyte growth factor-1 (KGF-1), vascular endothelial
growth factor (VEGF) and type I collagen production in cells at a dose of 16 mg/mL, and ameliorating
oral wound healing in rats with the dose of 2% acemannan daily [7]. A skin patch clinical trial of
100 healthy subjects showed that 5% acemannan had a significant effect in reducing ulcer size and
pain, and no subjects had an allergic reaction or side effects to acemannan. There was no significant
difference in blood routine between 7 days before and after application of acemannan [16].

However, the role and potential molecular mechanisms of acemannan in skin wound healing
are largely unclear. Therefore, two studies were conducted in vitro and in vivo. On one hand, the
first study used mouse skin wound model and skin primary fibroblasts as experimental materials,
and rapamycin and AKT inhibitor VIII were used to determine the key role of AKT/mTOR signaling
pathway in promoting acemannan skin wound healing. It was found that acemannan can significantly
accelerate wound closure and fibroblast proliferation in mice. The mechanism was that acemannan
promoted the expression of cyclin D1 in cultured fibroblasts via AKT/mTOR signaling pathway and
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enhanced the activity of eukaryotic translation initiation factor-4f (eIF4F) and increased translation of
cyclin D1, ultimately promoted wound healing in the skin [87]. On the other hand, further research for
the effect of acamannan on the healing of rat skull defect was studied. The results showed that the
bone surface and bone volume of the rats in the treatment group increased significantly. Histological
observation showed that the bone matrix density of the rats in the polysaccharide treatment group was
significantly higher than that of the control group. The results demonstrated that acemannan was an
effective natural bioactive substance that promotes bone growth, increases bone surface, bone volume
and bone density [88].

6. Structure-Activity Relationship

Numerous studies have shown that the structural characteristics of plant polysaccharides, such as
molecular weight, chemical composition, branching structure and conformation, affect their biological
activity [11,97,98]. First, acetyl is an important reactive group in acemannan. Studies have shown that
different processing conditions will affect the acetylation of polysaccharides. FTIR analysis showed
that the degree of acetylation of industrial freeze-dried samples was reduced by about 20%, while spray
drying, refraction window drying and radiation zone drying were reduced by about 20%. Acetylation
also further affected the physical properties of polysaccharides, and different drying methods also
promoted critical behaviors of flow behavior, from shear thinning behavior [99].

Moreover, acetylation and deacetylation, adding and removing an acetyl group, is of great
significance to the physical and biological activities of polysaccharides [80]. Studies have shown that
acetylation of acemannan enhances its viscosity and thermal stability due to the stability of acetyl and
hydroxyl groups [53]. On the acemannan structure, the acetyl group is the only non-glycan functional
group. Thus, the acetyl group may be a functional domain of acemannan, which affects at least some
of its topological structure, biological activity and physical properties. Deacetylation of acemannan, by
treating with NaOH, changed the water solubility, three-dimensional structure, hydrophobicity and
orderly packing of its molecules. Removing acemannan’s acetyl groups decreases its bioactivity by
reducing its inductive activity on cell proliferation. Thus, acetyl groups play an important role in the
structure and physical/biological properties of acemannan [14].

The degree of acetylation not only affects the physical properties of the polysaccharide, but also
affects the biological activity of the polysaccharide. By comparing with other semi-emulsions, one
study found that lower branches, shorter chains, and higher acetylation appeared to promote the
immunostimulatory activity of these polysaccharides [49].

A recent mechanistic study also confirmed the conclusion that acemannan acetyl groups regulate
the immune system, while hydroxyl groups participate in free radical scavenging. By binding MAPK
to toll-like receptors, in the production of NO or the binding of IL-1/IL-6 to acemannan, acetyl has
the strongest effect in TBI mouse macrophages, and the results of the study can also guide molecular
modification [53].

7. Applications of Acemannan

Numerous studies have shown that Aloe vera gel can promote wound healing and reduce the
damage caused by radiation to the skin. Thus, Aloe vera gel is made into various active materials,
such as antibacterial non-woven fabric [100], polyelectrolytes, aloe polysaccharide/bacterial cellulose
composite membrane [101], antibacterial and anti-oxidant edible films [102].

In fact, acemannan is the main active substance in the gel. One study tested the mechanical
properties, thermal properties and antibacterial activity of hybrid gels made by mixing chitosan and
acemannan (CS-AC). The results demonstrated that the CS-AC hybrid gel could provide promising
future development leads and other biomaterial scaffolds for wound therapy [103].

Acemannan has also found many applications in the medical industry. An acemannan-rich sponge
was more easily absorbed than a complex inorganic material, and can also act as a scaffold to provide
migration and attachment of cell growth factors, because the sponge can not only effectively fix the
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blood clot in orbit. Acemannan has a significant effect on the healing of alveolar bone and further
promotes bone formation. This means that acemannan may be a natural biopolysaccharide material
for bone regeneration [46].

In addition, acemannan can be used as an effective vaccine adjuvant to prevent certain avian
viral diseases. Because acemannan is able to effectively and permanently increase the activation
capacity of chicken systemic immune chamber macrophages (especially macrophages from blood
and spleen after intramuscular injection) by promoting the production of NO, ultimately regulating
immunity [17,74,104]. Other studies have found that Aloe vera, rich inβ-polysaccharides like acemannan,
could be used as a prebiotic fermented milk, but the specific mechanism needs further study [105].

8. Conclusions and Future Prospects

Aloe vera is one of the most popular medicinal plants, widely used in the prevention or treatment
of skin diseases, metabolic diseases, cardiovascular diseases and cancers throughout the world.
Acemannan is one of the main components responsible for various biological activities, especially
anti-tumor activity, and has received more and more scientific attention in recent years. Acemannan,
isolated and purified from Aloe vera, has a variety of biological activities and is widely used in functional
foods and pharmaceutical products. This paper mainly expounds the structural characteristics of
acemannan, including the composition, molecular weight, configuration and position of sugar chains
of monosaccharides. The biological activity and mechanism have been studied for many years.
Acemannan has good anti-tumor effect, immune activity, antioxidant activity, the ability to promote
wound healing and promote bone hyperplasia.

Although great improvement has been made these years, more efforts need to be done in this
research area. For instance, among polysaccharide extraction techniques, such as water extraction
and ethanol precipitation, the extraction rate of ethanol is relatively high, the operation is simple and
environmentally friendly. However, these extraction methods still have the disadvantages of being
time-consuming and high cost. What’s more, the degree of acetylation of the polysaccharide will
be affected if the experimental conditions are not appropriate, like high temperature. Therefore, the
extraction and separation of polysaccharides from Aole vera should be vigorously developed and utilized
by adopting new, simple, efficient and cost-effective methods such as ionic liquid-water two-phase
systems and nano-iron technology. Secondly, it is important to elucidate the chemical structure and
chain conformation of polysaccharides to study their biological activities, so the precise structure of
polysaccharides (higher order structure) and the relationship between structure and biological activity
need further characterization and evaluation for their biological activity. Moreover, the application of
acemannan in the medical field is of great significance and should be well established. On the other
hand, in order to fully determine the effects of acemannan metabolites on human health due to the
limitations of in vitro studies, it is necessary to further utilize powerful new technologies for human
nutrition, clinical and epidemiological studies, such as “omics technology” (genomics, transcriptomics,
metabolomics, and proteomics) and bioinformatics to elucidate the different mechanisms whereby
acemannan effects its biological activities.
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